

Diagnosis-driven SLO Violation DEtection

Yiran Lei, Yu Zhou, Yunsenxiao Lin, Mingwei Xu, Yangyang Wang

Tsinghua University

SLO Maintenance is Important

SLO Violation is Common and Destructive

	Distinct	Query Ref.	Revenuelle	4ny Clicks	Satisfaction	Time to Click	- dse in
50ms	-	-	-	-	-	-	
200ms	-	-	-	-0.3%	-0.4%	500	
500ms	-	-0.6%	-1.2%	-1.0%	-0.9%	1200	
1000ms	-0.7%	-0.9%	-2.8%	-1.9%	-1.6%	1900	
2000ms	-1.8%	-2.1%	-4.3%	-4.4%	-3.8%	3100	

Means no statistically significant change

CS:GO DoTA2

Latency SLO violation causes monetary damages from Google and Bing

Latency SLO violation is common at busy time when playing games from Australian ISPs

- Amazon lost \$66,240/ minute on 2013.8.19 due to a blackout
- 40-80 machines suffer from packet loss in DCN per year
- Katz-Bassett discovered reachability problems involving about 10,000 distinct prefixes during 3 weeks
- Tens of Internet outages from https://www.thousandeyes.com/outages/ in last 24 hours

Fast Mitigation upon SLO Violation diagnosis ====>troubleshooting detection \Rightarrow flow B flow A a server is sending large flow B traffic of flow B bursts delay of flow A exceeds 120ms ٠ the server is misconfigured flow A's SLO violation is due delay SLO is violated ٠ fix and mitigate violation to flow B's burst discover SLO violation: analyze causality of SLO violation: repair hardware and software \checkmark measure performance find flow-level causes . . . \checkmark compare with objectives

Problems of Existing Solutions

Detection Tools								
F uistin -	Property					SLO Type		
Solutions	granularity	lags	overhead	control plane involvement	end-host involvement	packet loss	percentile delay	max delay
ping	coarse	low	low	Х	\checkmark	\checkmark	\checkmark	\checkmark
Netflow	coarse	high	low	Х	Х	×	×	Х
SNMP	coarse	high	low	Х	Х	×	×	Х
NetSight	fine	low	high	\checkmark	×	\checkmark	\checkmark	\checkmark
SwitchPointer	fine	low	low	Х	\checkmark	×	×	Х
TPP	fine	low	high	Х	\checkmark	\checkmark	\checkmark	\checkmark
LossRadar	fine	high	low	\checkmark	Х	\checkmark	×	Х
INTSight	fine	low	low	\checkmark	X	×	×	\checkmark
???	fine	low	low	×	×	\checkmark	\checkmark	\checkmark

Problems of Existing Solutions

DOVE: Diagnosis-driven SLO Violation Detection

Detection								Diagnosis
Property SLO Type								
granularity	lags	overhead	control plane involvement	end-host involvement	packet loss	percentile delay	max delay	\checkmark
fine	low	low	×	×	\checkmark	\checkmark	\checkmark	

Epoch and Segmentation

DOVE measures SLOs on each segment during each epoch

SLO Violation Detector

- Packet Loss
 Coloring Algorithm: the number of lost packet
 completely on the data plane

upstream switch dyes packets red or green

 e_1 e_2 θ_2 2 switch's red/green counter records upstream 🔚 ++ when switch sends 💻 upstream 🔚 ++ when switch sends 💻 downstream 📩 ++ when switch receives 🔳 downstream 📇 ++ when switch receives 💻

3 upstream switch copies the counter value of previous epoch into the DOVE telemetry header

SLO Violation Detector

- Percentile Delay
 approximation algorithm
 on the data plane

	measure flow-level percentile delay			
difficult	what is η -percentile delay of a series of			
	measure delays?			

	verify SLO of percentile delay	
>	does η -percentile delay exceeds threshold d ?	feasible

Given N values sorted in ascending order, the η -percentile value is:

- $(1 + (N 1) \cdot \eta\%)$ -th sorted value, if $(N 1) \cdot \eta\%$ is an integer
- some value between $1 + |(N-1) \cdot \eta \%|$ -th and $1 + [(N-1) \cdot \eta \%]$ -th value, if not П.

Statement I: η -percentile value > d

Statement2: let the number of value exceeding d be $n, n > N - \lfloor (N-1) \cdot \eta \% \rfloor - 1$

- if $(N-1) \cdot \eta\%$ is an integer, Statement I \Leftrightarrow Statement2 . proof: η -percentile value is $(1 + (N - 1) \cdot \eta)$ -th value
- if not, Statement I ← Statement2 П. proof: If $n = N - \lfloor (N-1) \cdot \eta \% \rfloor - 1$, d can be any value between $1 + \lfloor (N-1) \cdot \eta \% \rfloor$ -th and $1 + \lfloor (N-1) \cdot \eta \% \rfloor$ $[(N-1) \cdot \eta\%]$ -th value. In this case, η -percentile value can have any size relations to d.

SLO Violation Detector

✓ Percentile Delay

Statement I: η -percentile value > dStatement 2: let the number of value exceeding d be $n, n > N - \lfloor (N - 1) \cdot \eta \% \rfloor - 1$

Statement I $\stackrel{approximation}{\longleftrightarrow}$ Statement2: calculate $N - \lfloor (N-1) \cdot \eta\% \rfloor$ from control plane and populate it as a threshold to the data plane

✓ Max Delay

compares the new measured delay with history delays and stores the bigger one

Suspicious Flow Behavior Monitor

Unlike SLO measuring, the monitor checks flow behaviors on each DOVE switch during each epoch

Suspicious Flow Behavior Monitor

what contributes to SLO violations ?

- Heavy Hitter: monitor flows with large traffic
- Heavy Changer: monitor flows whose traffic increases rapidly monitor newly-established flows

SLO Violation Analyzer

principle:

- I. location adjacency: flows sharing same queues
- 2. epoch adjacency: flows having close epochs

correlate the alert to:

- I. high queue occupancy at upstream switch:
 - events from alert's upstream switch
 - events sharing same egress port with the alert
 - events happen just before alerts
 - any heavy hitters or heavy changers
- 2. high queue occupancy at the previous switch of the downstream switch:
 - events from alert's downstream switch
 - events sharing same ingress port with the alert
 - events happen just before alerts
 - □ any heavy hitters and heavy changers

alert	event
flow ID	flow ID
upstream switch id	switch id
egress port	ingress port
downstream switch id	egress port
ingress port	if heavy hitter
if violate max delay SLO	if heavy changer
if violate percentile delay SLO	epoch
if violate packet loss SLO	
epoch	

Case Study - DOVE's effectiveness

settings and collected alerts:

selected flow A suffers performance degradation from flow B,C,D competition on link s2-s1

Case Study: DOVE's effectiveness

diagnosis results:

(a) provenance on diagnosis point 1

- diagnosis point 1: only flow B is the culprit flow
- diagnosis point 2: flow B, C, D are all the culprit flows

(b) provenance on diagnosis point 2

DOVE's overhead: alert, event, telemetry header

- there is a tradeoff between SLO measure accuracy (epoch length) and overhead
- telemetry header overhead is proportional to the size of selected flows

DOVE's delay: accuracy and overhead

- packet loss:
 - good coverage rate (>97%)
 - generates much less traffic overhead compared with NetSight and LossRadar
 - heavy packet loss makes Coloring Algorithm less effective
- delay:
 - generate less traffic overhead than INTSight (simpler telemetry header)

DOVE's resource utilization over large networks

- 512 selected flows and 512 watched flows for each pair of nodes
- DOVE TCAM = 2x INTSight TCAM
 - DOVE monitors two sets of flows • as INTSight only monitors one
- DOVE SRAM > INTSight SRAM
 - DOVE requires many registers to store intermediate values
- The required resources can fit into programmable switches such as Tofino.

Network Label Nodes Links Average Path Length Bell Canada BC 48 130 5.3 US Signal US 61 158 6.0 VTLWavenet VW 92 192 13.1 TATA TA 145 388 9.9 CG 10.5 Cogent 197 490 **RF1239 RF1239** 315 4.0 1944 250_c DOVE DOVE **INTSight INTSight** 200 A-SwP TCAM(Mb) A-SwP SRAM(Mb) 100 50 BC **VWRF1239** CG BC **VW RF1239** CG TA US Network Label Network Label

(b)

TCAM utilization (Mb)

(a)

Metadata of network topologies.

SRAM utilization (Mb)

THANKS

leiyr20[AT]mails[DOT]tsinghua[DOT]edu[DOT]cn